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Abstract This paper is concerned with an algorithm for selecting the best set of s variables
out of k(> s) candidate variables in a multiple linear regression model. We employ absolute
deviation as the measure of deviation and solve the resulting optimization problem by using
0-1 integer programming methodologies. In addition, we will propose a heuristic algorithm
to obtain a close to optimal set of variables in terms of squared deviation. Computational
results show that this method is practical and reliable for determining the best set of variables.

Keywords Linear regression · Least absolute deviation · Variable selection · Cardinality
constraint · 0-1 integer programming

1 Introduction

Variable selection is of primary importance in regression analysis [3,9]. Let Y be a random
variable to be explained by a set of k candidate variables Xi , i = 1, 2, . . . , k using the linear
expression:

Y = α0 + α1 X1 + α2 X2 + · · · + αk Xk + ε, (1)

where α0, α1, . . . , αk are parameters to be estimated and ε is a residual random variable.
If there exist many candidate variables, we have to choose a certain portion of these

variables which achieve the required quality of fitting. AIC [1] is one of the very popular
methods for this purpose. To apply this criterion, however, we need to have prior information
about the statistical properties of residual variables. Also, it need not always lead to the best
set of variables. Many other criteria have been proposed in the past [3], but they all inherit
advantages and disadvantages of AIC.

H. Konno · R. Yamamoto (B)
Department of Industrial and Systems Engineering, Chuo University, 2-13-27, Kasuga, Bunkyo-ku, Tokyo
112-8551, Japan
e-mail: rei@kc.chuo-u.ac.jp

R. Yamamoto
Mitsubishi UFJ Trust Investment Technology Institute Co., Ltd, 2-5-6, Shiba, Minato-ku, Tokyo 105-0014,
Japan

123



274 J Glob Optim (2009) 44:273–282

In this paper, we will consider those problems for which AIC is not applicable due to
the lack of information about the statistical structure of the residual variable. Such problems
often appear in finance, bio-informatics and elsewhere.

The problem to be considered in this paper is:

Given a positive integer s, find the set of variables xi1 , xi2 , . . . , xis such that the total
amount of residual error is minimal.

This is a difficult combinatorial optimization problem for which no exact and efficient
algorithm has been proposed in the past. To find an optimal combination, we need to use an
enumeration approach. The number of possible explanatory variables k in the traditional field
is not very large, say less than 20 or 30. However, much larger problems are under consid-
eration. For example, k is over 100 in failure discriminant analysis [7,8] and it is sometimes
larger than 1,000 in bio-informatics [11]. When k = 100 and s = 20 as in the case of failure
discriminant analysis [8], the number of possible combinations is 100C20 ∼ 1021, so that
total enumeration is completely out of reach. Therefore, people use some sort of heuristic
approach [6,9,10].

One commonly used method is to sequentially introduce s “important” variables one at a
time. When the residual error is small enough, then we are done. Otherwise we eliminate a
certain variable from the model and add a new one in its place and continue until the fitting is
satisfactory enough. This procedure usually leads to a good solution, but it may not generate
the best combination. The purpose of this paper is to propose an exact and efficient method
to solve the problem stated above.

In Sect. 2, we first formulate this problem as a quadratic mixed 0-1 integer programming
problem [13]. However, there exists no efficient algorithm for solving this problem to date.
Therefore we will propose an alternative representation of the problem by replacing squared
deviation by absolute deviation as a measure of variation. Least absolute deviation estima-
tion [2] is less popular among practitioners, but it has some nice properties. Also, the use of
absolute deviation leads to a 0-1 mixed linear integer programming problem which can be
solved by the state-of-the-art mathematical programming methodology [5,13].

Further, we will propose a two-step method for calculating an optimal solution of the qua-
dratic mixed 0-1 integer programming formulation. Though this procedure need not always
generate an optimal solution, it usually generates very good solutions as demonstrated by a
series of numerical experiments to be presented in Sect. 3. Finally, in Sect. 4 we will discuss
the future direction of research.

2 Least absolute deviation fitting problem and a two-step algorithm

Given T sets of data (yt , x1t , x2t , . . . , xkt ), t = 1, 2, . . . , T , let us define

f (α0, α1, . . . , αk) =
T∑

t=1

⎧
⎨

⎩yt −
⎛

⎝α0 +
k∑

j=1

α j x j t

⎞

⎠

⎫
⎬

⎭

2

. (2)

Then the problem posed in the Introduction can be formulated as the following constrained
minimization problem:

minimize f (α0, α1, . . . , αk)

subject to: at most s components of (α1, α2, . . . , αk) are non-zero.
(3)
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By introducing zero-one integer variables z j , j = 1, 2, . . . , k, this problem can be formulated
as a quadratic 0-1 integer programming problem:

Pk(s)

minimize f (α0, α1, . . . , αk)

subject to
k∑

j=1

z j = s

α j z j ≤ α j ≤ α j z j , j = 1, 2, . . . , k
z j ∈ {0, 1}, j = 1, 2, . . . , k,

(4)

where α j and α j are respectively, the largest and smallest possible value of α j . If z j = 0 in
(4) then α j = 0, so that at most s components of α j can be non-zero, as required. Algorithmic
research for solving quadratic 0-1 integer programming problems is now under way [13].
However, there exists no efficient and exact algorithm to date.

The key idea of this paper is to replace squared deviation f (α0, α1, . . . , αk) by absolute
deviation:

g(α0, α1, . . . , αk) =
T∑

t=1

∣∣∣∣∣∣
yt −

⎛

⎝α0 +
k∑

j=1

α j x j t

⎞

⎠

∣∣∣∣∣∣
, (5)

and consider the following problem:

Qk(s)

minimize g(α0, α1, . . . , αk)

subject to
k∑

j=1

z j = s

α j z j ≤ α j ≤ α j z j , j = 1, 2, . . . , k
z j ∈ {0, 1}, j = 1, 2, . . . , k.

(6)

It is well known that the least absolute deviation estimator is more robust than the least square
estimator [2]. Also, optimal solutions of Pk(s) and Qk(s) are similar in many situations, since
both problems minimize measures of residual variation. For detailed discussion about least
absolute deviation estimation, readers are referred to [2].

It is well known that Qk(s) can be rewritten as a 0-1 linear integer programming problem
below:

minimize
T∑

t=1

(ut + vt )

subject to ut − vt = yt −
⎛

⎝α0 +
k∑

j=1

α j x j t

⎞

⎠ , t = 1, 2, . . . , T

ut ≥ 0, vt ≥ 0, t = 1, 2, . . . , T
k∑

j=1

z j = s

α j z j ≤ α j ≤ α j z j , j = 1, 2, . . . , k
z j ∈ {0, 1}, j = 1, 2, . . . , k.

(7)

Problem (7) has an optimal solution since it is feasible and the objective function is bounded
below.

Theorem 1 Let (α∗
0 , α∗

1 , . . . , α∗
k , u∗

1, u∗
2, . . . , u∗

T , v∗
1 , v∗

2 , . . . , v∗
T , z∗

1, z∗
2, . . . , z∗

k ) be an opti-
mal solution of (7). Then (α∗

0 , α∗
1 , . . . , α∗

k , z∗
1, z∗

2, . . . , z∗
k ) is an optimal solution of (6).
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Proof See Chapter 14 of Ref. [4]. ��

When k, s, T are not very large, problem (7) can be solved by the state-of-the-art software
such as CPLEX10.1 [5].

Let us now propose a two-step algorithm for solving Pk(s). The first step is to solve the
least absolute deviation estimation problem Qk(s + r):

Qk(s + r)

minimize g(α0, α1, . . . , αk)

subject to
k∑

j=1

z j = s + r

α j z j ≤ α j ≤ α j z j , j = 1, 2, . . . , k
z j ∈ {0, 1}, j = 1, 2, . . . , k,

(8)

where r ≤ k − s is some positive integer. Let (α∗
0 , α∗

1 , . . . , α∗
k ) be an optimal solution of (8),

and assume without loss of generality that z∗
j = 0 for j > s + r .

Let (α̂0, α̂1, . . . , α̂k) be an optimal solution of Pk(s). Then it is likely that α̂ j = 0 for
almost all j > s + r for large enough r since absolute deviation and squared deviation are
similar measures of variation.

To attempt to recover an optimal solution of Pk(s), we solve

Ps+r (s)

minimize f (α0, α1, . . . , αk)

subject to
s+r∑

j=1

z j = s

α j z j ≤ α j ≤ α j z j , j = 1, 2, . . . , k
z j ∈ {0, 1}, j = 1, 2, . . . , s + r.

(9)

If r is not large, this problem can be solved by solving s+r Cs least square subproblems
associated with all possible s out of s + r combinations.

3 Result of computational experiments

3.1 Test for randomly generated data

We conducted numerical experiments using several types of randomly generated data sets.
For explanatory variables X j , we assumed that all variables are i.i.d.. For Y variables we
generated five sets of data.

Data Set 1 (DS1) Y ∼ N (0, 1) and independent of each X j ∼ N (0, 1).
Data Set 2 (DS2) Y ∼ N (2, 1) correlated with each X j ∼ N (2, 1) with correlation coeffi-

cient 0.1.1

Data Set 3 (DS3) Y ∼ N (2, 1) correlated with each X j ∼ N (2, 1) with correlation coeffi-
cient 0.3.

Data Set 4 (DS4) Y is an inverse logit transformation of the random variable Ŷ ∼ N (0, 1),
independent of each X j ∼ N (0, 1).

Data Set 5 (DS5) Y = 0 or 1 with equal probability, independent of each X j ∼ N (0, 1).

1 Let U ∼ N (0, 1), V ∼ N (0, 1). We generated Y, X with correlation coefficient ρ as X = U + 2, Y =
ρU +

√
1 − ρ2V + 2.
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We solved the problem (7) by CPLEX10.1 [5] on a personal computer Xeon (3.73 GHz).
Table 1 shows the number of possible combinations kCs . We see from this that total enumer-
ation is impractical for large scale problems.

First, let us explain the method for choosing lower and upper bounds α j and α j on vari-
ables α j , j = 1, 2, . . . , k. If we choose the interval [α j , α j ] large enough, then we would
not miss an optimal solution. We conducted preliminary experiments using a variety of test
data to find that (α j , α j ) = (−10, 10) is more than enough for all data belonging to Data
Sets 1–5.

However, this scheme results in large computation time as presented in Table 2. The num-
ber p of the 3rd column denotes the number of problems solved within 1,500 CPU seconds
out of 5 test problems. On the other hand, problems with (α j , α j ) = (0, 10) can be solved
an order of magnitude faster.

This observation leads us to the following scheme:

(α j , α j ) =
{

(0, 10), if cov(X j , Y ) > 0,

(−10, 0), otherwise.
(10)

by noting the fact that α j associated with X j having positive (negative) correlation with Y
is expected to have non-negative (non-positive) optimal value.

Table 1 Values of log10k Cs s k

20 50 100 200

5 4.2 6.3 7.9 9.4

10 5.3 10.0 13.2 16.4

20 0.0 13.7 20.7 27.2

30 13.7 25.5 35.6

40 10.0 28.1 42.3

50 0.0 29.0 47.7

Table 2 CPU time for
solving problems with
different choices of (α j , α j )

k s p CPU (s)

(a) (α j , α j ) = (−10, 10)

20 5 5 1.08

10 5 1.09

50 5 5 174.43

10 2 1011.21

20 0 –

(b) (α j , α j ) = (0, 10)

20 5 5 0.29

10 5 0.13

50 5 5 4.91

10 5 3.66

20 5 0.85
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Table 3 CPU time for solving Qk (s) (T = 200)

k s DS1 DS2 DS3 DS4 DS5

20 5 0.35 0.80 9.43 0.26 0.19

10 0.20 0.55 8.56 0.18 0.13

50 5 6.73 325.16 – 5.00 9.68

10 14.60 – – 3.70 23.36

20 1.41 – – 0.84 3.44

100 5 299.05 – – 306.61 541.30

Table 4 Average gap between
upper bound and lower bound
(%) (k = 100, DS4)

s T

200 500 1,000

5 0.00 0.43 1.16

10 3.90 1.34 0.98

20 3.11 1.09 0.77

30 0.74 0.17 0.23

We compared this scheme with an alternative scheme (α j , α j ) = (−10, 10) to find that
the two schemes result in the same solutions with a very few exceptions.

Table 3 shows the CPU time for several combinations of (k, s) and 5 different types of
data sets. The number in the table shows the average CPU seconds of 5 test problems. Blanks
in this table imply that the corresponding problems could not be solved to optimality within
1,500 CPU seconds. We see that problems are more difficult when Y and X j ’s are correlated.

Table 4 shows the quality of incumbent solutions (the best solution obtained after the
elapse of 1,500 CPU seconds) for problems which were not solved to optimality within
1,500 CPU seconds. We see that very good solutions have been generated.

In Table 5, we look into the details of incumbent solutions, where relative error implies
the relative difference between the incumbent objective value and optimal value. We see that
a reasonably good solution has been generated within 200 CPU seconds though more than
800 s are required to generate an optimal solution.

Figure 1 shows the magnitude of R̄2, the (degrees of freedom) adjusted R2, a well used
measure of fit of solutions obtained by using the two-step algorithm and S-plus [10,12] where

R̄2 = 1 − T − 1

T − s − 1

{
1 −

∑T
t=1(ŷt − ¯̂y)2

∑T
t=1(yt − ȳ)2

}
, (11)

ŷt = α∗
0 +

k∑

j=1

α∗
j x j t , (12)

¯̂y =
T∑

t=1

ŷt/T . (13)
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Table 5 Quality of the
incumbent solution (k = 100,
s = 10, T = 200, DS4)

CPU (s) Objective value Relative error (%) Gap (%) R̄2

5 31.36 0.98 8.21 0.096

10 31.22 0.52 7.28 0.116

50 31.11 0.17 4.20 0.117

100 31.11 0.17 3.53 0.117

200 31.06 0.00 2.47 0.117

500 31.06 0.00 1.31 0.117

832 31.06 0.00 0.01 0.117
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Fig. 1 Comparison of R̄2 (T = 200, k = 50, DS1)

Larger R̄2’s are more desirable. We see that the two-step algorithm generates more or less the
same result if we choose r large enough. Also the two step algorithm sometimes generates
better solutions, when s + r ≥ 20.

3.2 Test for real data associated with failure discriminant analysis

We next compare the two-step algorithm and S-plus using real data associated with failure
discriminant analysis where yt = 1 or 0 depending upon whether the t th company failed or
not and x jt is the j th financial attribute of the t th company. We prepared four data sets with
(T, k) = (200, 50), (200,70), (1000,50), (1000,70) randomly chosen from 6,556 corporate
data among which 40% failed.

Figure 2 shows the distribution of correlation coefficients between pairs of 50 financial
attributes. We see that the majority of financial attributes are lowly correlated with correlation
coefficient between −0.3 and 0.3, but there are a non-negligible number of highly correlated
pairs.

Figures 3 and 4 show the quality of fitting. We see that the two-step algorithm generates
a significantly better solution. In fact, when s + r is over 15 and T = 1,000, the two-step
algorithm outperforms S-plus.

Table 6 shows the CPU time for the two-step algorithm. We see that computation time
is much smaller than the random case. Finally, Fig. 5 shows the magnitude of the absolute
deviation calculated by solving Qk(s) and the sequential method similar to the one used in
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Fig. 2 Histogram of correlation coefficients (k = 50)

0.15

0.2

0.25

0.3

0.35

0.4

0.45

number of selected variables (s)

ad
ju

st
ed

 R
2

Stepwise

s+r=30

s+r=20

s+r=10

2 14131211109876543

Fig. 3 Comparison of R̄2 (T = 200, k = 50)
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Fig. 4 Comparison of R̄2 (T = 1,000, k = 70)
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Table 6 CPU time (s) k s + r 1st 2nd

(a) T = 200

50 10 0.65 0.55

20 0.65 0.86

30 0.65 1.33

S-plus – 6.22

70 10 135.52 0.61

20 24.78 1.69

30 1.08 17.94

S-plus – 9.65

(b) T = 1,000

50 10 10.17 1.36

20 10.31 3.01

30 0.53 3.61

S-plus – 11.54

70 10 1500.00 1.34

20 1500.00 2.98

30 23.23 13.00

S-plus – 18.63
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Fig. 5 Comparison of the magnitude of absolute deviation (T = 200, k = 50)

S-plus for least squares fitting. We see that the solution of Qk(s) is significantly better than
that obtained by the sequential method.

4 Conclusions and future research directions

We showed in this paper that the problem posed in the Introduction can be solved within
a practical amount of computation time if k is less than, say 100 by employing absolute
deviation as the measure of variation.
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The selected set of variables may be used in the subsequent regression analysis. Also
we may be able to recover the best set of variables in terms of squared deviation by using
two-step algorithm explained in Sect. 2. The quality of solutions obtained by this method is
usually very close to that of S-plus and sometimes superior.

The largest problem solved in this paper is (T, k) = (1000, 100), but problems with
(T, k) = (2000, 200) would be solved without too much difficulty. For larger problems with
k over 200, we are now developing a good heuristic algorithm.

Also, we are trying to develop an efficient method for solving problem (6) without impos-
ing the condition (10). Further, we are trying to solve problem (8) with additional constraint
on the choice of variables. For example it may be better to avoid the inclusion of highly
correlated variables in the model. These extensions will be reported in a forthcoming paper.
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